FnrS RNA
For FNRS (Fonds National de la Recherche Scientifique), see
NFWO.
FnrS |
|
Conserved secondary structure of FnrS RNA. The colour of nucleotides indicate their conservation within the family. |
Identifiers |
Symbol |
FnrS |
Rfam |
RF01796 |
Other data |
RNA type |
Gene |
Domain(s) |
Enterobacteriaceae |
FnrS RNA is a family of Hfq-binding small RNA whose expression is upregulated in response to anaerobic conditions. It is named FnrS because its expression is strongly dependant on fumarate and nitrate reductase regulator (FNR), a direct oxygen availability sensor.[1][2]
A conserved intergenic region between genes ydaN and dbpA was predicted to encode an sRNA, adjacent to where another non-coding RNA (C0343) has been identified.[3] However, northern blot analysis of this 477bp sequence yielded no results.[4] A subsequent tiling array analysis sequencing Hfq-binding sRNA found that the Watson strand did indeed encode an sRNA.[1]
Gene regulation
FnrS has been shown to downregulate 32 different mRNAs in Enterobacteria, in 15 of these cases it does so by base-pairing with the mRNA transcript.[1] The majority of genes downregulated by FnrS are required for aerobic metabolism or the oxidative stress response.[2] Some of the genes downregulated by FrnS are:[1]
There is evidence to suggest that the expression of FnrS is regulated by the RcsCDB signalling system in Salmonella enterica.[9]
References
- ^ a b c d Durand S, Storz G (March 2010). "Reprogramming of anaerobic metabolism by the FnrS small RNA". Mol. Microbiol. 75 (5): 1215–31. doi:10.1111/j.1365-2958.2010.07044.x. PMC 2941437. PMID 20070527. http://www3.interscience.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0950-382X&date=2010&volume=75&issue=5&spage=1215. Retrieved 2010-08-04.
- ^ a b Boysen A, Møller-Jensen J, Kallipolitis B, Valentin-Hansen P, Overgaard M (April 2010). "Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli". J. Biol. Chem. 285 (14): 10690–702. doi:10.1074/jbc.M109.089755. PMID 20075074. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=20075074. Retrieved 2010-08-05.
- ^ Tjaden B, Saxena RM, Stolyar S, Haynor DR, Kolker E, Rosenow C (September 2002). "Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays". Nucleic Acids Res. 30 (17): 3732–8. doi:10.1093/nar/gkf505. PMC 137427. PMID 12202758. http://nar.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=12202758. Retrieved 2010-08-05.
- ^ Carter RJ, Dubchak I, Holbrook SR (October 2001). "A computational approach to identify genes for functional RNAs in genomic sequences". Nucleic Acids Res. 29 (19): 3928–38. doi:10.1093/nar/29.19.3928. PMC 60242. PMID 11574674. http://nar.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=11574674. Retrieved 2010-08-05.
- ^ Poole RK, Gibson F, Wu G (April 1994). "The cydD gene product, component of a heterodimeric ABC transporter, is required for assembly of periplasmic cytochrome c and of cytochrome bd in Escherichia coli". FEMS Microbiol. Lett. 117 (2): 217–23. doi:10.1111/j.1574-6968.1994.tb06768.x. PMID 8181727.
- ^ van der Rest ME, Frank C, Molenaar D (December 2000). "Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli". J. Bacteriol. 182 (24): 6892–9. PMC 94812. PMID 11092847. http://jb.asm.org/cgi/pmidlookup?view=long&pmid=11092847. Retrieved 2010-08-06.
- ^ EntrezGene 944953
- ^ EntrezGene 8872708
- ^ Paradela A, Mariscotti JF, Navajas R, Ramos-Fernández A, Albar JP, García-Del Portillo F (2011). "Inverse regulation in the metabolic genes pckA and metE revealed by proteomic analysis of the Salmonella RcsCDB regulon.". J Proteome Res 10 (8): 3386–98. doi:10.1021/pr101294v. PMID 21657791.
Further reading
External links