FnrS RNA

FnrS
Conserved secondary structure of FnrS RNA. The colour of nucleotides indicate their conservation within the family.
Identifiers
Symbol FnrS
Rfam RF01796
Other data
RNA type Gene
Domain(s) Enterobacteriaceae

FnrS RNA is a family of Hfq-binding small RNA whose expression is upregulated in response to anaerobic conditions. It is named FnrS because its expression is strongly dependant on fumarate and nitrate reductase regulator (FNR), a direct oxygen availability sensor.[1][2]

A conserved intergenic region between genes ydaN and dbpA was predicted to encode an sRNA, adjacent to where another non-coding RNA (C0343) has been identified.[3] However, northern blot analysis of this 477bp sequence yielded no results.[4] A subsequent tiling array analysis sequencing Hfq-binding sRNA found that the Watson strand did indeed encode an sRNA.[1]

Contents

Gene regulation

FnrS has been shown to downregulate 32 different mRNAs in Enterobacteria, in 15 of these cases it does so by base-pairing with the mRNA transcript.[1] The majority of genes downregulated by FnrS are required for aerobic metabolism or the oxidative stress response.[2] Some of the genes downregulated by FrnS are:[1]

There is evidence to suggest that the expression of FnrS is regulated by the RcsCDB signalling system in Salmonella enterica.[9]

References

  1. ^ a b c d Durand S, Storz G (March 2010). "Reprogramming of anaerobic metabolism by the FnrS small RNA". Mol. Microbiol. 75 (5): 1215–31. doi:10.1111/j.1365-2958.2010.07044.x. PMC 2941437. PMID 20070527. http://www3.interscience.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0950-382X&date=2010&volume=75&issue=5&spage=1215. Retrieved 2010-08-04. 
  2. ^ a b Boysen A, Møller-Jensen J, Kallipolitis B, Valentin-Hansen P, Overgaard M (April 2010). "Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli". J. Biol. Chem. 285 (14): 10690–702. doi:10.1074/jbc.M109.089755. PMID 20075074. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=20075074. Retrieved 2010-08-05. 
  3. ^ Tjaden B, Saxena RM, Stolyar S, Haynor DR, Kolker E, Rosenow C (September 2002). "Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays". Nucleic Acids Res. 30 (17): 3732–8. doi:10.1093/nar/gkf505. PMC 137427. PMID 12202758. http://nar.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=12202758. Retrieved 2010-08-05. 
  4. ^ Carter RJ, Dubchak I, Holbrook SR (October 2001). "A computational approach to identify genes for functional RNAs in genomic sequences". Nucleic Acids Res. 29 (19): 3928–38. doi:10.1093/nar/29.19.3928. PMC 60242. PMID 11574674. http://nar.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=11574674. Retrieved 2010-08-05. 
  5. ^ Poole RK, Gibson F, Wu G (April 1994). "The cydD gene product, component of a heterodimeric ABC transporter, is required for assembly of periplasmic cytochrome c and of cytochrome bd in Escherichia coli". FEMS Microbiol. Lett. 117 (2): 217–23. doi:10.1111/j.1574-6968.1994.tb06768.x. PMID 8181727. 
  6. ^ van der Rest ME, Frank C, Molenaar D (December 2000). "Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli". J. Bacteriol. 182 (24): 6892–9. PMC 94812. PMID 11092847. http://jb.asm.org/cgi/pmidlookup?view=long&pmid=11092847. Retrieved 2010-08-06. 
  7. ^ EntrezGene 944953
  8. ^ EntrezGene 8872708
  9. ^ Paradela A, Mariscotti JF, Navajas R, Ramos-Fernández A, Albar JP, García-Del Portillo F (2011). "Inverse regulation in the metabolic genes pckA and metE revealed by proteomic analysis of the Salmonella RcsCDB regulon.". J Proteome Res 10 (8): 3386–98. doi:10.1021/pr101294v. PMID 21657791. 

Further reading

External links